Advanced Probability : Back-Paper Exam

Yogeshwaran D.

January 15th, 2020.

Submit solutions via Moodle by 15th December 12:30 PM.

Contact : d.yogesh@gmail.com ;

Please write and sign the following declaration on your answer script first :

I have not received, I have not given, nor will I give or receive, any assistance to another student taking this exam, including discussing the exam with other students. The solution to the problems are my own and I have not copied it from anywhere else. I have used only class notes and the notes of D. Panchenko, R. Durrett and M. Krishnapur.

Attempt any five questions. Each question carries 10 points. If you attempt more than five questions, the first five answers will be evaluated.

1. Let $X_{i}, i \geq 1$ be i.i.d. random variables such that $\mathbb{P}\left(X_{1}=+1\right)=p=$ $1-\mathbb{P}\left(X_{1}=-1\right)$. Consider the random walk $S_{n}:=\sum_{i=1}^{n} X_{i}$. Let $p>\frac{1}{2}$ and $q=1-p$. Consider the integer $b \geq 1$ and let $\tau:=\min \left\{n \geq 1: S_{n}=b\right\}$. Show that for $0<s \leq 1$,

$$
\mathbb{E}\left[s^{\tau}\right]=\left(\frac{1-\left(1-4 p q s^{2}\right)^{\frac{1}{2}}}{2 q s}\right)^{b}
$$

and compute $\mathbb{E}[\tau]$.
2. Let M_{n} be a $\operatorname{Poisson}(n)$ random variable. Let $X_{1}, \ldots, X_{n}, \ldots$ be i.i.d. uniform random vectors in the unit disk $D=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$ and are also independent of M_{n}. Let B_{1}, \ldots, B_{k} be Borel subsets of D. Let

$$
N_{i, n}:=\left|\left\{X_{1}, \ldots, X_{M_{n}}\right\} \cap B_{i}\right|, 1 \leq i \leq k
$$

be the number of points X_{1}, \ldots, X_{n} falling inside B_{i}. Consider the vector $N_{n}=\left(N_{1, n}, \ldots, N_{k, n}\right), n \geq 1$. Is there a vector μ_{n} and scalar $\sigma_{n} \geq 0$ such that

$$
\frac{N_{n}-\mu_{n}}{\sigma_{n}} \xrightarrow{d} N(0, C),
$$

for some matrix C ? If yes, find μ_{n}, σ_{n} and C as well.
3. Let $Z_{n}, n \geq 0$ be the Galton-Watson branching process with mean offspring μ i.e. $X_{i, j}, i, j \geq 1$ are i.i.d. \mathbb{Z}_{+}-valued random variables with pmf $\left(p_{k}\right)_{k \geq 0}$ and

$$
Z_{0}:=1, Z_{n+1}:=\sum_{j=1}^{Z_{n}} X_{n+1, j}, n \geq 0
$$

Let $\mu=\mathbb{E}\left[X_{1,1}\right]$. Define $\phi(s):=\sum_{k=0}^{\infty} s^{k} p_{k}, s \in[0,1]$ as the probability generating function of $X_{1,1}$ and let s_{0} be the smallest root of $\phi(s)=s$ in $s \in[0,1]$. Show that Z_{n} / μ^{n} and $\left(s_{0}\right)^{Z_{n}}$ are martingales.
4. Let $X=\left(X_{1}, \ldots, X_{k}\right)$ be a multivariate Normal random variable on \mathbb{R}^{k} with distribution $N(0, C)$. Prove that

$$
\mathbb{E}\left[X_{1} F(X)\right]=\sum_{i=1}^{n} C_{1 i} \mathbb{E}\left[\frac{\partial F}{\partial x_{i}}(X)\right]
$$

for $F: \mathbb{R}^{k} \rightarrow \mathbb{R}$ with second partial derivatives and integrable first partial derivatives.
5. Suppose that X_{i} are i.i.d. random variables such that $\mathbb{E}\left[X_{1}\right]=0, \mathbb{E}\left[\left|X_{1}\right|\right]<$ ∞. If $c_{n}, n \geq 1$ is a bounded sequence of real numbers, show that as $n \rightarrow \infty$,

$$
\frac{1}{n} \sum_{i=1}^{n} c_{i} X_{i} \xrightarrow{\text { a.s. }} 0 .
$$

6. Let $f:[0,1]^{k} \rightarrow \mathbb{R}$ be a continuous function. Show that

$$
\lim _{n \rightarrow \infty} \sum_{0 \leq j_{1}, \ldots, j_{k} \leq n} f\left(\frac{j_{1}}{n}, \ldots, \frac{j_{k}}{n}\right) \prod_{i=1}^{k}\binom{n}{j_{i}} x_{i}^{j_{i}}\left(1-x_{i}\right)^{n-j_{i}}=f\left(x_{1}, \ldots, x_{k}\right)
$$

, uniformly on $[0,1]^{k}$.

